Monday, 18 July 2022

ATOMIC STRUCTURE/ PARMANU SANRACHNA/परमाणु संरचना

 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

परमाणु की संरचना कक्षा 11 नोट्स रसायन विज्ञान अध्याय 2

इलेक्ट्रॉन की खोजडिस्चार्ज ट्यूब प्रयोग

1879 में, विलियम क्रुक्स ने कम दबाव में गैसों के माध्यम से बिजली के संचालन का अध्ययन किया। उन्होंने एक डिस्चार्ज ट्यूब में प्रयोग किया जो लगभग 60 सेमी लंबाई की एक बेलनाकार कठोर कांच की ट्यूब है। इसे दोनों सिरों पर सील कर दिया गया है और दो धातु इलेक्ट्रोड के साथ लगाया गया है जैसा कि चित्र 2.1 में दिखाया गया है।

 


गैसों के माध्यम से विद्युत निर्वहन केवल बहुत कम दबाव और बहुत अधिक वोल्टेज पर देखा जा सकता है।

निकासी द्वारा विभिन्न गैसों के दबाव को समायोजित किया जा सकता है। जब इलेक्ट्रोड में पर्याप्त रूप से उच्च वोल्टेज लगाया जाता है, तो ट्यूब में नकारात्मक इलेक्ट्रोड (कैथोड) से सकारात्मक इलेक्ट्रोड (एनोड) में जाने वाले कणों की एक धारा के माध्यम से धारा प्रवाहित होने लगती है। इन्हें कैथोड किरणें या कैथोड किरण कण कहा जाता था।

कैथोड किरणों के गुण

(i) कैथोड किरणें सीधी रेखा में गमन करती हैं।

(ii) कैथोड किरणें कैथोड से शुरू होकर एनोड की ओर बढ़ती हैं।

(iii) ये किरणें स्वयं दिखाई नहीं देती हैं, लेकिन उनके व्यवहार को कुछ प्रकार के पदार्थों (फ्लोरोसेंट या फॉस्फोरसेंट) की मदद से देखा जा सकता है, जो इनके टकराने पर चमकते हैं।

(iv) कैथोड किरणों में ऋणावेशित कण होते हैं। जब धातु की प्लेटों की एक जोड़ी की सहायता से कैथोड किरणों पर विद्युत क्षेत्र लगाया जाता है, तो ये ऋणात्मक आवेश की उपस्थिति का संकेत देते हुए धनात्मक प्लेट की ओर विक्षेपित पाई जाती हैं।

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

(v) कैथोड किरणों की विशेषताएं इलेक्ट्रोड की सामग्री और कैथोड रे'ट्यूब में मौजूद गैस की प्रकृति पर निर्भर नहीं करती हैं।

इलेक्ट्रॉनों के लिए चार्ज/मास (e/m) अनुपात का निर्धारण

जे जे थॉमसन ने पहली बार प्रयोगात्मक रूप से निर्धारित चार्ज/द्रव्यमान अनुपात को इलेक्ट्रॉनों के लिए e/m अनुपात कहा जाता है। इसके लिए उन्होंने डिस्चार्ज ट्यूब में छोड़े गए इलेक्ट्रॉनों के बीम को कैथोड किरणों के रूप में विद्युत और चुंबकीय क्षेत्रों को प्रभावित करने के लिए अधीन किया। ये एक दूसरे के साथ-साथ इलेक्ट्रॉनों द्वारा अनुसरण किए जाने वाले पथ के लंबवत कार्य कर रहे थे।

थॉमसन के अनुसार, विद्युत और चुंबकीय क्षेत्र की उपस्थिति में कणों के अपने पथ से विचलन की मात्रा निम्नलिखित कारकों पर निर्भर करती है:

(i) कण पर आवेश का परिमाण जितना अधिक होगा, विद्युत या चुंबकीय क्षेत्र के साथ अन्योन्यक्रिया उतनी ही अधिक होगी और इस प्रकार विक्षेपण भी उतना ही अधिक होगा।

(ii) कण का द्रव्यमान - कण जितना हल्का होगा, विक्षेपण उतना ही अधिक होगा।

(iii) इलेक्ट्रॉनों के अपने मूल पथ से विक्षेपण इलेक्ट्रोड में वोल्टेज में वृद्धि या चुंबकीय क्षेत्र की ताकत के साथ बढ़ता है।

विद्युत क्षेत्र की ताकत या चुंबकीय क्षेत्र की ताकत पर इलेक्ट्रॉनों द्वारा देखे गए विक्षेपों की मात्रा पर सटीक माप करके, थॉमसन का मूल्य निर्धारित करने में सक्षम था

e/me = 1.758820 x 1011 C kg-1 जहाँ me = इलेक्ट्रॉन का द्रव्यमान kg . में

e = कूलम्ब (C) में इलेक्ट्रॉन पर आवेश का परिमाण।

इलेक्ट्रॉन पर चार्ज

आर.. मिलिकन ने इलेक्ट्रॉनों पर आवेश को निर्धारित करने के लिए तेल ड्रॉप प्रयोग के रूप में जाना जाने वाला एक तरीका तैयार किया।

 


प्रोटॉन की खोजएनोड किरणें

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

1886 में, गोल्डस्टीन ने एक छिद्रित कैथोड का उपयोग करके डिस्चार्ज ट्यूब को संशोधित किया। दबाव कम करने पर, उन्होंने कैथोड के छिद्रों या छिद्रों से गुजरते हुए और कैथोड किरणों के विपरीत दिशा में आगे बढ़ने वाली एक नई प्रकार की चमकदार किरणों को देखा। इन किरणों को धनात्मक किरणें या एनोड किरणें या कैनाल किरणें नाम दिया गया। एनोड किरणें एनोड से नहीं बल्कि एनोड और कैथोड के बीच के स्थान से निकलती हैं।

एनोड किरणों के गुण

(i) एनोड किरणों को बनाने वाले कणों पर धनात्मक आवेश (e) का मान डिस्चार्ज ट्यूब में गैस की प्रकृति पर निर्भर करता है।

(ii) कणों के आवेश से द्रव्यमान का अनुपात उस गैस पर निर्भर करता है जिससे ये उत्पन्न होते हैं।

(iii) कुछ धनात्मक आवेशित कणों में विद्युत आवेश की मूलभूत इकाई का गुणज होता है।

(iv) चुंबकीय या विद्युत क्षेत्र में इन कणों का व्यवहार इलेक्ट्रॉन या कैथोड किरणों के लिए देखे गए व्यवहार के विपरीत है।

प्रोटॉन

सबसे छोटा और सबसे हल्का धनात्मक आयन हाइड्रोजन से प्राप्त किया गया था और इसे प्रोटॉन कहा जाता था। प्रोटॉन का द्रव्यमान = 1.676 x 10-27 किग्रा

प्रोटॉन पर आवेश = (+) 1.602 x 10-19 C

न्यूट्रॉन

यह एक तटस्थ कण है। इसकी खोज चैडविक (1932) ने की थी।

बेरिलियम की पतली चादरों की तेज गति से चलने वाले कणों की बमबारी से उन्होंने देखा कि अत्यधिक मर्मज्ञ किरणों में तटस्थ कण होते हैं जिन्हें न्यूट्रॉन नाम दिया गया था।

परमाणु का थॉमसन मॉडल

 


 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

(i) जे जे थॉमसन ने प्रस्तावित किया कि एक परमाणु को लगभग 1CT8 सेमी त्रिज्या के क्षेत्र के रूप में माना जा सकता है जिसमें प्रोटॉन के कारण सकारात्मक चार्ज होता है और जिसमें नकारात्मक रूप से चार्ज किए गए इलेक्ट्रॉन एम्बेडेड होते हैं।

(ii) इस मॉडल में, परमाणु को एक हलवा या सकारात्मक चार्ज के केक के रूप में देखा जाता है, जिसमें इलेक्ट्रॉनों को एम्बेडेड किया जाता है।

(iii) इस मॉडल के अनुसार परमाणु के द्रव्यमान को परमाणु पर समान रूप से फैला हुआ माना जाता है।

परमाणु के थॉमसन मॉडल का दोष

यह मॉडल परमाणु की समग्र तटस्थता की व्याख्या करने में सक्षम था, यह संतोषजनक रूप से 1911 में रदरफोर्ड द्वारा किए गए प्रकीर्णन प्रयोगों के परिणामों की व्याख्या नहीं कर सका।

रदरफोर्ड का α-कण प्रकीर्णन प्रयोग

1911 में रदरफोर्ड ने कुछ प्रकीर्णन प्रयोग किए जिसमें उन्होंने सोने, चांदी, प्लेटिनम या तांबे जैसी धातुओं की पतली पन्नी पर तेजी से गति करने वाले α-कणों के बीम से बमबारी की। पतली सोने की पन्नी के चारों ओर एक गोलाकार फ्लोरोसेंट जिंक सल्फाइड स्क्रीन थी। जब भी स्क्रीन पर कोई कण टकराता है, तो उस बिंदु पर प्रकाश की एक छोटी सी चमक उत्पन्न होती है।

इन प्रयोगों से, उन्होंने निम्नलिखित अवलोकन किए:

-


(i) अधिकांश α-कण बिना किसी विक्षेपण के पन्नी से होकर गुजरे,

(ii) कुछ α-कण छोटे कोणों से विक्षेपित हुए।

(iii) बहुत कम α ही पीछे की ओर विक्षेपित होते हैं अर्थात लगभग 180° के कोण से।

इन अवलोकनों से, रदरफोर्ड ने निम्नलिखित निष्कर्ष निकाले:

(i) चूंकि अधिकांश α-कण बिना किसी विक्षेपण के पन्नी से होकर गुजरे, इसलिए परमाणु के भीतर पर्याप्त खाली स्थान होना चाहिए।

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

(ii) α-कणों का एक छोटा अंश छोटे कोणों से विक्षेपित हुआ। धनात्मक आवेश को बहुत कम आयतन में केंद्रित करना होता है जो कुछ धनात्मक आवेशित a-कणों को विकर्षित और विक्षेपित करता है। परमाणु के इस छोटे से हिस्से को नाभिक कहा जाता था।

(iii) परमाणु के कुल आयतन की तुलना में नाभिक का आयतन बहुत कम होता है।

रदरफोर्ड का परमाणु का परमाणु मॉडल

(i) परमाणु का धनात्मक आवेश और अधिकांश द्रव्यमान एक अत्यंत छोटे क्षेत्र में सघन रूप से केंद्रित था। परमाणु के इस छोटे से हिस्से को रदरफोर्ड ने न्यूक्लियस कहा था।

(ii) नाभिक इलेक्ट्रॉनों से घिरा होता है जो नाभिक के चारों ओर बहुत तेज गति से वृत्ताकार पथों में घूमते हैं जिन्हें कक्षाएँ कहा जाता है।

(iii) इलेक्ट्रोस्टैटिक आकर्षण बल द्वारा इलेक्ट्रॉन और नाभिक एक साथ बंधे रहते हैं।

परमाणु क्रमांक

नाभिक में उपस्थित प्रोटॉनों की संख्या परमाणु क्रमांक (z) के बराबर होती है। उदाहरण के लिए, हाइड्रोजन नाभिक में प्रोटॉन की संख्या 1 है, सोडियम परमाणु में यह 11 है, इसलिए, उनकी परमाणु संख्या 1 और 11 है। विद्युत तटस्थता बनाए रखने के लिए, परमाणु में इलेक्ट्रॉनों की संख्या बराबर होती है प्रोटॉन की संख्या (परमाणु संख्या, z) उदाहरण के लिए, हाइड्रोजन परमाणु और सोडियम परमाणु में इलेक्ट्रॉनों की संख्या क्रमशः 1 और 11 है।

परमाणु क्रमांक (z) = परमाणु के नाभिक में प्रोटॉनों की संख्या।

= उदासीन परमाणु में इलेक्ट्रॉनों की संख्या।

द्रव्यमान संख्या

नाभिक में मौजूद प्रोटॉन और न्यूट्रॉन की संख्या को सामूहिक रूप से न्यूक्लियॉन के रूप में जाना जाता है। नाभिकों की कुल संख्या को परमाणु की द्रव्यमान संख्या (A) कहते हैं।

द्रव्यमान संख्या () = प्रोटॉन की संख्या (पी) + न्यूट्रॉन की संख्या (एन)

समस्थानिक

समान परमाणु क्रमांक लेकिन भिन्न परमाणु द्रव्यमान संख्या वाले परमाणु समस्थानिक कहलाते हैं।

हाइड्रोजन के समस्थानिक:

 

 

 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

 


इन तीन समस्थानिकों को नीचे दिए गए चित्र में दिखाया गया है:

 


 


आइसोटोप के लक्षण

(i) चूंकि किसी तत्व के समस्थानिकों की परमाणु संख्या समान होती है, लेकिन द्रव्यमान संख्या भिन्न होती है, इसलिए समस्थानिकों के नाभिक में प्रोटॉन की संख्या समान होती है, लेकिन न्यूट्रॉन की संख्या भिन्न होती है।

(ii) चूंकि, समस्थानिक अपने परमाणु द्रव्यमान में भिन्न होते हैं, समस्थानिकों के द्रव्यमान के आधार पर सभी गुण भिन्न होते हैं।

(iii) चूंकि, रासायनिक गुण मुख्य रूप से नाभिक में प्रोटॉन की संख्या और परमाणु में इलेक्ट्रॉनों की संख्या से निर्धारित होते हैं, एक तत्व के विभिन्न समस्थानिक समान रासायनिक गुणों को प्रदर्शित करते हैं। उदाहरण के लिए, कार्बन के सभी समस्थानिक जलने पर कार्बन डाइऑक्साइड देते हैं।

आइसोबार



DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

रदरफोर्ड मॉडल की कमियां

(i) जब कोई पिंड कक्षा में घूम रहा होता है, तो वह त्वरण प्राप्त करता है। इस प्रकार, एक कक्षा में नाभिक के चारों ओर घूमने वाला इलेक्ट्रॉन त्वरण के अधीन होता है।

मैक्सवेल के विद्युत चुम्बकीय सिद्धांत के अनुसार, आवेशित कणों को त्वरित होने पर विद्युत चुम्बकीय विकिरणों का उत्सर्जन करना चाहिए। इसलिए, कक्षा में एक इलेक्ट्रॉन विकिरण उत्सर्जित करेगा, विकिरण द्वारा वहन की जाने वाली ऊर्जा इलेक्ट्रॉनिक गति से आती है। इसका पथ नाभिक के करीब हो जाएगा और अंततः नाभिक में सर्पिल होना चाहिए। 10-8 एस। लेकिन असल में ऐसा होता नहीं है।

इस प्रकार, रदरफोर्ड का मॉडल परमाणु की स्थिरता की व्याख्या नहीं कर सकता है यदि इलेक्ट्रॉनों की गति का वर्णन शास्त्रीय यांत्रिकी और विद्युत चुम्बकीय सिद्धांत के आधार पर किया जाता है।

(ii) रदरफोर्ड का मॉडल नाभिक के चारों ओर इलेक्ट्रॉनों के वितरण और उनकी ऊर्जाओं के बारे में कोई विचार नहीं देता है।

बोहर के परमाणु मॉडल की ओर ले जाने वाले विकास

बोहर के परमाणु मॉडल के निर्माण में दो विकासों ने प्रमुख भूमिका निभाई। ये थे:

(i) विद्युत चुम्बकीय विकिरण का दोहरा चरित्र जिसका अर्थ है कि विकिरणों में तरंग समान और कण समान गुण होते हैं।

(ii) परमाणु स्पेक्ट्रा के बारे में प्रायोगिक परिणाम जिन्हें केवल परमाणुओं में परिमाणित इलेक्ट्रॉनिक ऊर्जा स्तरों को मानकर समझाया जा सकता है।

विद्युतचुंबकीय विकिरण की प्रकृति (विद्युत चुम्बकीय तरंग सिद्धांत)

इस सिद्धांत को 1864 में जेम्स क्लार्क मैक्सवेल ने सामने रखा था। इस सिद्धांत के मुख्य बिंदु इस प्रकार हैं:

(i) ऊर्जा किसी भी स्रोत (जैसे गर्म छड़ या बल्ब के फिलामेंट से विद्युत धारा प्रवाहित होती है) से लगातार विकिरणों के रूप में उत्सर्जित होती है और इसे विकिरण ऊर्जा कहा जाता है।

(ii) विकिरणों में विद्युत और चुंबकीय क्षेत्र होते हैं जो एक दूसरे के लंबवत दोलन करते हैं और दोनों विकिरण के प्रसार की दिशा के लंबवत होते हैं।

(iii) विकिरणों में तरंग विशेषता होती है और वे प्रकाश के वेग से 3 x 108 मीटर/सेकेंड तक यात्रा करते हैं।

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

(iv) इन तरंगों को संचरण के लिए किसी भौतिक माध्यम की आवश्यकता नहीं होती है। उदाहरण के लिए, सूर्य से किरणें अंतरिक्ष के माध्यम से हम तक पहुँचती हैं जो एक अभौतिक माध्यम है।

तरंगदैर्घ्य: इसे किन्हीं दो क्रमागत शिखाओं या गर्तों के बीच की दूरी के रूप में परिभाषित किया जाता है। इसे X द्वारा निरूपित किया जाता है और इसका SI मात्रक मीटर है।

आवृत्ति: एक तरंग की आवृत्ति को एक बिंदु से एक सेकंड में गुजरने वाली तरंगों की संख्या के रूप में परिभाषित किया जाता है। इसे v (nu) द्वारा दर्शाया जाता है और हर्ट्ज़ (Hz) में व्यक्त किया जाता है।

1 हर्ट्ज = 1 चक्र/सेकंड।

वेग: एक तरंग के वेग को एक सेकंड में तरंग द्वारा तय की गई रैखिक दूरी के रूप में परिभाषित किया जाता है।

इसे c द्वारा दर्शाया जाता है और cm/sec या m/sec में व्यक्त किया जाता है।

आयाम: एक लहर का आयाम शिखर की ऊंचाई या गहराई की गहराई है। इसे V द्वारा निरूपित किया जाता है और लंबाई की इकाइयों में व्यक्त किया जाता है।

वेव नंबर: इसे 1 मीटर लंबाई में मौजूद तरंगों की संख्या के रूप में परिभाषित किया जाता है। स्पष्ट रूप से यह तरंगदैर्घ्य के व्युत्क्रम के बराबर होगा। इसे बार v (nu bar के रूप में पढ़ा जाता है) द्वारा दर्शाया जाता है।

विद्युतचुंबकीय स्पेक्ट्रम (Electromagnetic Spectrum) : जब विद्युत चुम्बकीय विकिरणों को उनके बढ़ते हुए तरंगदैर्घ्य या घटती आवृत्तियों के क्रम में व्यवस्थित किया जाता है, तो प्राप्त होने वाले पूर्ण स्पेक्ट्रम को विद्युतचुंबकीय स्पेक्ट्रम कहा जाता है।

 


 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

विद्युतचुंबकीय तरंग सिद्धांत की सीमाएं

विद्युत चुम्बकीय तरंग सिद्धांत प्रकाश के गुणों जैसे हस्तक्षेप, विवर्तन आदि को समझाने में सफल रहा; लेकिन यह निम्नलिखित की व्याख्या नहीं कर सका:

(i) ब्लैक बॉडी रेडिएशन की घटना।

(ii) प्रकाश विद्युत प्रभाव।

(iii) तापमान के फलन के रूप में ठोसों की ऊष्मा क्षमता में परिवर्तन।

(iv) हाइड्रोजन के संदर्भ में परमाणुओं का रेखा स्पेक्ट्रा।

श्याम पिंडों से उत्पन्न विकिरण

आदर्श पिंड, जो सभी आवृत्तियों का उत्सर्जन और अवशोषण करता है, ब्लैक बॉडी कहलाता है और ऐसे पिंड द्वारा उत्सर्जित रेडिएशन को ब्लैक बॉडी रेडिएशन कहा जाता है। . एक काले शरीर से उत्सर्जित विकिरण का सटीक आवृत्ति वितरण केवल उसके तापमान पर निर्भर करता है।

 


किसी दिए गए तापमान पर, उत्सर्जित विकिरण की तीव्रता तरंग दैर्ध्य में कमी के साथ बढ़ जाती है, किसी दिए गए तरंग दैर्ध्य पर अधिकतम मान तक पहुंच जाती है और फिर तरंग दैर्ध्य में और कमी के साथ घटने लगती है जैसा कि चित्र 2.6 में दिखाया गया है।

प्लैंक का क्वांटम सिद्धांत

'ब्लैक बॉडी रेडिएशन' और फोटोइलेक्ट्रिक प्रभाव की घटना की व्याख्या करने के लिए, मैक्स प्लैंक ने 1900 में एक सिद्धांत को सामने रखा, जिसे प्लैंक के क्वांटम सिद्धांत के रूप में जाना जाता है।

इस सिद्धांत को आइंस्टीन ने 1905 में और आगे बढ़ाया। इस सिद्धांत के मुख्य बिंदु इस प्रकार थे:

 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

(i) ऊर्जा के छोटे पैकेट के रूप में उत्सर्जित या अवशोषित होने वाली विकिरण ऊर्जा। ऊर्जा के ऐसे प्रत्येक पैकेट को क्वांटम कहा जाता है।

(ii) प्रत्येक क्वांटम की ऊर्जा विकिरण की आवृत्ति के सीधे आनुपातिक होती है

 


जहाँ h एक समानुपाती नियतांक है, जिसे प्लांक नियतांक कहते हैं। इसका मान 6.626 x 10-34 Jsec के बराबर है।

प्रकाश विद्युत प्रभाव

हर्ट्ज़ ने 1887 में पता लगाया कि जब एक निश्चित आवृत्ति का प्रकाश पुंज कुछ धातुओं की सतह से टकराता है, तो धातु की सतह से इलेक्ट्रॉन उत्सर्जित या बाहर निकल जाते हैं। घटना को फोटोइलेक्ट्रिक प्रभाव कहा जाता है।

 


फोटोइलेक्ट्रिक प्रभाव में अवलोकन

(i) थ्रेशोल्ड फ़्रीक्वेंसी (v0) नामक निश्चित न्यूनतम आवृत्ति के प्रकाश के केवल फोटॉन ही फोटोइलेक्ट्रिक प्रभाव पैदा कर सकते हैं। विभिन्न धातुओं के लिए v0 का मान भिन्न होता है।

(ii) उत्सर्जित इलेक्ट्रॉनों की गतिज ऊर्जा हड़ताली फोटॉनों की आवृत्ति के सीधे आनुपातिक होती है और उनकी तीव्रता से काफी स्वतंत्र होती है।

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

(iii) धातु की सतह से प्रति सेकंड उत्सर्जित होने वाले इलेक्ट्रॉनों की संख्या हड़ताली फोटॉनों या विकिरणों की तीव्रता पर निर्भर करती है कि उनकी आवृत्ति पर।

फोटोइलेक्ट्रिक प्रभाव की व्याख्या

आइंस्टीन (1905) में प्लैंक के क्वांटम सिद्धांत का उपयोग करते हुए फोटोइलेक्ट्रिक प्रभाव के विभिन्न बिंदुओं की व्याख्या निम्नानुसार करने में सक्षम थे:

(i) फोटोइलेक्ट्रॉन तभी बाहर निकलते हैं जब आपतित प्रकाश की एक निश्चित न्यूनतम आवृत्ति होती है (दहलीज आवृत्ति v0)

(ii) यदि आपतित प्रकाश की आवृत्ति (v) दहलीज आवृत्ति (v0) से अधिक है, तो इलेक्ट्रॉन को अतिरिक्त ऊर्जा (hv - hv0) गतिज ऊर्जा के रूप में प्रदान की जाती है।

के.. उत्सर्जित इलेक्ट्रॉन का

 


उत्सर्जित इलेक्ट्रॉन की ऊर्जा।

(iii) प्रकाश की तीव्रता बढ़ने पर अधिक इलेक्ट्रॉन उत्सर्जित होते हैं लेकिन इलेक्ट्रॉनों की ऊर्जा में कोई परिवर्तन नहीं होता है।

विद्युतचुंबकीय विकिरण का दोहरा व्यवहार

प्रकाश के व्यवहार के अध्ययन से, वैज्ञानिक इस निष्कर्ष पर पहुंचे कि प्रकाश और अन्य विद्युत चुम्बकीय विकिरणों में दोहरी प्रकृति होती है। ये तरंग प्रकृति के साथ-साथ कण प्रकृति भी हैं। जब भी विकिरण पदार्थ के साथ परस्पर क्रिया करता है, तो यह तरंगीय गुणों (हस्तक्षेप और विवर्तन) के विपरीत कण जैसे गुणों को प्रदर्शित करता है, जो इसे प्रचारित करते समय प्रदर्शित करता है। कुछ सूक्ष्म कण, जैसे इलेक्ट्रॉन, भी इस तरंग-कण द्वैत को प्रदर्शित करते हैं।

स्पेक्ट्रम

जब श्वेत प्रकाश की किरण किसी प्रिज्म से होकर गुजरती है तो छोटी तरंगदैर्घ्य वाली तरंग लंबी तरंगदैर्घ्य वाली तरंग की तुलना में अधिक झुकती है। चूँकि साधारण श्वेत प्रकाश में सभी तरंगदैर्घ्य वाली तरंगें दृश्य

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

सीमा में होती हैं, श्वेत प्रकाश की सरणी रंगीन बैंडों की एक श्रृंखला में फैली हुई है जिसे स्पेक्ट्रम कहा जाता है। लाल रंग का प्रकाश जिसकी तरंगदैर्घ्य सबसे लंबी होती है, सबसे कम विचलित होता है जबकि सबसे कम तरंगदैर्घ्य वाले बैंगनी प्रकाश का विचलन सबसे अधिक होता है।

सतत स्पेक्ट्रम

जब श्वेत प्रकाश की किरण का विश्लेषण प्रिज्म से गुजरते हुए किया जाता है तो यह देखा जाता है कि यह बैंगनी से लाल (इंद्रधनुष की तरह) रंगों के सात अलग-अलग विस्तृत बैंड में विभाजित हो जाती है। ये रंग इतने निरंतर हैं कि उनमें से प्रत्येक अगले में विलीन हो जाता है। इसलिए, स्पेक्ट्रम को निरंतर स्पेक्ट्रम कहा जाता है।

उत्सर्जन स्पेक्ट्रा

उत्सर्जन स्पेक्ट्रा तब देखा जाता है जब किसी स्रोत से निकलने वाले विकिरणों को एक प्रिज्म से गुजारा जाता है और फिर फोटोग्राफिक प्लेट पर प्राप्त किया जाता है। विकिरणों को कई तरीकों से उत्सर्जित किया जा सकता है जैसे:

(i)                 सूरज या चमकते बिजली के बल्ब से।

(ii) कम दबाव पर गैस के माध्यम से विद्युत निर्वहन पारित करके।

(iii) किसी पदार्थ को उच्च तापमान पर गर्म करके।

लाइन स्पेक्ट्रा

जब किसी वाष्पशील पदार्थ के वाष्प को बन्सन बर्नर की लौ पर गिरने दिया जाता है और फिर स्पेक्ट्रोस्कोप की सहायता से विश्लेषण किया जाता है। फोटोग्राफिक प्लेट पर कुछ विशिष्ट रंगीन रेखाएँ दिखाई देती हैं जो विभिन्न पदार्थों के लिए भिन्न होती हैं। उदाहरण के लिए, सोडियम या इसके लवण पीली रोशनी उत्सर्जित करते हैं जबकि पोटेशियम या इसके लवण बैंगनी प्रकाश देते हैं।

अवशोषण स्पेक्ट्रा

जब किसी पदार्थ के वाष्प के माध्यम से सफेद प्रकाश पारित किया जाता है और संचरित प्रकाश को प्रिज्म से टकराने की अनुमति दी जाती है, अन्यथा निरंतर स्पेक्ट्रम में अंधेरे रेखाएं दिखाई देती हैं। काली रेखाएं इंगित करती हैं कि उनके अनुरूप विकिरणों को पदार्थ द्वारा श्वेत प्रकाश से अवशोषित किया गया था। इस स्पेक्ट्रम को अवशोषण स्पेक्ट्रम कहा जाता है।

डार्क लाइनें ठीक उसी स्थिति में दिखाई देती हैं जहां उत्सर्जन स्पेक्ट्रा में रेखाएं दिखाई देती हैं।

हाइड्रोजन का लाइन स्पेक्ट्रम

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

जब कम दबाव में डिस्चार्ज ट्यूब में संलग्न हाइड्रोजन गैस के माध्यम से विद्युत निर्वहन पारित किया जाता है और उत्सर्जित प्रकाश का विश्लेषण स्पेक्ट्रोस्कोप द्वारा किया जाता है, तो स्पेक्ट्रम में बड़ी संख्या में रेखाएं होती हैं जिन्हें विभिन्न श्रृंखलाओं में समूहीकृत किया जाता है। पूर्ण स्पेक्ट्रम को हाइड्रोजन स्पेक्ट्रम के रूप में जाना जाता है।

प्रायोगिक प्रेक्षणों के आधार पर, जोहान्स रिडबर्ग ने नोट किया कि हाइड्रोजन स्पेक्ट्रम में सभी श्रृंखलाओं को निम्नलिखित अभिव्यक्ति द्वारा वर्णित किया जा सकता है:

 


रिडबर्ग ने 1890 में, और हाइड्रोजन स्पेक्ट्रम की विभिन्न श्रृंखलाओं में वर्णक्रमीय रेखाओं की तरंग दैर्ध्य और तरंग संख्याओं की गणना के लिए एक सरल सैद्धांतिक समीकरण दिया है। समीकरण को Rydberg सूत्र (या समीकरण) के रूप में जाना जाता है।

 


यह संबंध केवल हाइड्रोजन परमाणु के लिए मान्य है। अन्य प्रजातियों के लिए,

 


जहां Z प्रजातियों की परमाणु संख्या है।

यहाँ RH = स्थिरांक, जिसे हाइड्रोजन के लिए Rydberg स्थिरांक कहा जाता है और n1, n2 पूर्णांक हैं (n2 > n1)

किसी विशेष श्रेणी के लिए, n1 का मान स्थिर रहता है जबकि n2 का मान बदलता है। उदाहरण के लिए,

लाइमैन श्रेणी के लिए, n1= 1, n2= 2, 3, 4, 5………..

 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

बामर श्रेणी के लिए, n1 = 2, n2 = 3, 4, 5, 6………..

पासचेन श्रेणी के लिए, n1= 3, n2 = 4, 5, 6, 7………..

ब्रैकेट श्रृंखला के लिए, n1 = 4, n2 = 5, 6, 7, 8………..

Pjund श्रेणी के लिए, n1 =5, n2 = 6, 7, 8, 9………..

इस प्रकार, उपरोक्त समीकरण में n1 और n2 के मानों को प्रतिस्थापित करके, विभिन्न वर्णक्रमीय रेखाओं की तरंग दैर्ध्य और तरंग संख्या की गणना की जा सकती है। जब n1 = 2, ऊपर दिए गए व्यंजक को बामर सूत्र कहते हैं।

बोहर का परमाणु का मॉडल

1913 में नील्स बोहर ने प्लैंक के क्वांटम सिद्धांत के आधार पर परमाणु का एक नया मॉडल प्रस्तावित किया। इस मॉडल के मुख्य बिंदु इस प्रकार हैं:

(i) एक परमाणु में, इलेक्ट्रॉन नाभिक के चारों ओर कुछ निश्चित वृत्ताकार पथों में परिक्रमा करते हैं जिन्हें कक्षाएँ कहते हैं।

(ii) प्रत्येक कक्षा निश्चित ऊर्जा से जुड़ी होती है और इसलिए इन्हें ऊर्जा के रूप में जाना जाता है

स्तर या ऊर्जा के गोले। इन्हें 1, 2, 3, 4 ……….. या K, L, M, N……….. के रूप में क्रमांकित किया गया है।

(iii) इलेक्ट्रॉन के लिए केवल उन्हीं ऊर्जा कक्षाओं की अनुमति है जिनमें इलेक्ट्रॉन का कोणीय संवेग h/2π का पूर्णांक गुणज है।

इलेक्ट्रॉन का कोणीय संवेग (mvr) = nh/2π (n = 1, 2, 3, 4 आदि)

एम = इलेक्ट्रॉन का द्रव्यमान।

v = परिक्रामी इलेक्ट्रॉन का स्पर्शरेखा वेग।

r = कक्षा की त्रिज्या।

एच = प्लैंक स्थिरांक।

n एक पूर्णांक है।

(iv) जब तक इलेक्ट्रॉन एक विशेष कक्षा में मौजूद है, यह तो ऊर्जा को अवशोषित करता है और ही खोता है और इसलिए इसकी ऊर्जा स्थिर रहती है।

(v) जब एक इलेक्ट्रॉन को ऊर्जा की आपूर्ति की जाती है, तो यह केवल निश्चित मात्रा में क्वांटा के रूप में ऊर्जा को अवशोषित करता है और उत्तेजित अवस्था के रूप में ज्ञात नाभिक से दूर उच्च ऊर्जा अवस्था में

 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

कूद जाता है। उत्तेजित अवस्था अस्थिर होती है, इलेक्ट्रॉन वापस निम्न ऊर्जा अवस्था में कूद सकता है और ऐसा करने पर, यह उतनी ही मात्रा में ऊर्जा का उत्सर्जन करता है। (∆E = E2 - E1)

बोहर के सिद्धांत की उपलब्धियां

1. बोर के सिद्धांत ने परमाणु की स्थिरता की व्याख्या की है।

2. बोर के सिद्धांत ने हाइड्रोजन परमाणु और एक इलेक्ट्रॉन प्रजाति में इलेक्ट्रॉन की ऊर्जा की गणना करने में मदद की है। nवीं कक्षा में ऊर्जा के लिए गणितीय व्यंजक है,

 


बोहर मॉडल की सीमाएं

(i) सिद्धांत एक से अधिक इलेक्ट्रॉन या बहुइलेक्ट्रॉन परमाणुओं वाले परमाणुओं के परमाणु स्पेक्ट्रा की व्याख्या नहीं कर सका।

(ii) Bohr7s सिद्धांत वर्णक्रमीय रेखाओं की बारीक संरचना की व्याख्या करने में विफल रहा।

(iii) बोहर का सिद्धांत जीमन प्रभाव और स्टार्क प्रभाव की कोई संतोषजनक व्याख्या नहीं कर सका।

(iv) बोहर का सिद्धांत रासायनिक बंधों द्वारा निर्मित अणु बनाने के लिए परमाणुओं की क्षमता की व्याख्या करने में विफल रहा।

(v) यह हाइजेनबर्ग के अनिश्चितता सिद्धांत के अनुरूप नहीं था।

पदार्थ का दोहरा व्यवहार (डी ब्रोगली समीकरण)

1924 में डी ब्रोगली ने प्रस्तावित किया कि विकिरण की तरह पदार्थ को भी दोहरे व्यवहार का प्रदर्शन करना चाहिए, यानी कण जैसे और तरंग जैसे गुण। इसका मतलब है कि फोटॉन की तरह, इलेक्ट्रॉनों में भी गति के साथ-साथ तरंग दैर्ध्य भी होता है।

इस सादृश्य से, डी ब्रोगली ने एक भौतिक कण के तरंग दैर्ध्य (λ) और गति (पी) के बीच निम्नलिखित संबंध दिया।

 


DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

हाइजेनबर्ग का अनिश्चितता सिद्धांत

यह बताता है कि, "एक इलेक्ट्रॉन की सटीक स्थिति और सटीक गति (या वेग) को एक साथ निर्धारित करना असंभव है"

 


अनिश्चितता सिद्धांत का महत्व

(i) यह इलेक्ट्रॉनों और अन्य समान कणों के निश्चित पथ या प्रक्षेपवक्र के अस्तित्व को नियंत्रित करता है।

(ii) हाइजेनबर्ग के अनिश्चितता सिद्धांत का प्रभाव केवल सूक्ष्म वस्तुओं के लिए महत्वपूर्ण है और मैक्रोस्कोपिक वस्तुओं के लिए नगण्य है।

बोहर मॉडल की विफलता के कारण

(i) बोर मॉडल में इलेक्ट्रॉन के तरंग लक्षण पर विचार नहीं किया जाता है।

(ii) बोर मॉडल के अनुसार एक कक्षा एक स्पष्ट रूप से परिभाषित पथ है और इस पथ को पूरी तरह से तभी परिभाषित किया जा सकता है जब इलेक्ट्रॉन की स्थिति और वेग दोनों एक ही समय में ज्ञात हों। हाइजेनबर्ग के अनिश्चितता सिद्धांत के अनुसार यह संभव नहीं है।

परमाणु का क्वांटम यांत्रिक मॉडल

क्वांटम यांत्रिकी: क्वांटम यांत्रिकी एक सैद्धांतिक विज्ञान है जो सूक्ष्म वस्तुओं की गति के अध्ययन से संबंधित है, जिसमें देखने योग्य तरंग और कण जैसे गुण दोनों होते हैं।

परमाणु के क्वांटम यांत्रिक मॉडल की महत्वपूर्ण विशेषताएं

(i) परमाणु में इलेक्ट्रॉनों की ऊर्जा परिमाणित होती है अर्थात, केवल कुछ मान हो सकते हैं।

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

(ii) परिमाणित इलेक्ट्रॉनिक ऊर्जा स्तर का अस्तित्व इलेक्ट्रॉनों के तरंग जैसे गुणों का प्रत्यक्ष परिणाम है।

(iii) एक परमाणु में इलेक्ट्रॉन की सटीक स्थिति और सटीक वेग दोनों एक साथ निर्धारित नहीं किए जा सकते।

(iv) एक परमाणु कक्षक का तरंग फलन होता है। एक परमाणु में कई कक्षक होते हैं। इलेक्ट्रॉन एक परमाणु कक्षक पर कब्जा कर लेता है जिसमें निश्चित ऊर्जा होती है। एक कक्षक में दो से अधिक इलेक्ट्रॉन नहीं हो सकते। कक्षक ऊर्जा के बढ़ते क्रम में भरे हुए हैं। एक परमाणु में इलेक्ट्रॉन के बारे में सारी जानकारी कक्षीय तरंग फलन में संग्रहीत होती है।

(v) किसी परमाणु के किसी बिंदु पर इलेक्ट्रॉन मिलने की प्रायिकता उस बिंदु पर कक्षीय तरंग फलन के वर्ग के समानुपाती होती है। इसे संभाव्यता घनत्व के रूप में जाना जाता है और यह हमेशा सकारात्मक होता है।

परमाणु के भीतर विभिन्न बिंदुओं पर φ2 के मान से, नाभिक के आसपास के क्षेत्र की भविष्यवाणी करना संभव है जहां इलेक्ट्रॉन सबसे अधिक पाए जाएंगे।

क्वांटम संख्याएं

परमाणु कक्षकों को उनकी संगत ऊर्जा और कोणीय संवेग देकर निर्दिष्ट किया जा सकता है जो परिमाणित हैं (अर्थात, उनके विशिष्ट मान हैं) परिमाणित मानों को क्वांटम संख्या के रूप में व्यक्त किया जा सकता है। इनका उपयोग इलेक्ट्रॉन यानी उसकी स्थिति, ऊर्जा, स्पिन आदि के बारे में पूरी जानकारी प्राप्त करने के लिए किया जाता है।

प्रिंसिपल क्वांटम नंबर (n) मुख्य क्वांटम

यह सबसे महत्वपूर्ण क्वांटम संख्या है क्योंकि यह उस प्रमुख ऊर्जा स्तर या कोश को बताती है जिससे इलेक्ट्रॉन संबंधित है। इसे V अक्षर से दर्शाया जाता है और शून्य को छोड़कर इसका कोई भी अभिन्न मान हो सकता है, अर्थात, n = 1, 2, 3, 4……….. आदि।

विभिन्न प्रमुख ऊर्जा कोशों को K, L, M, N, O, P ….. आदि अक्षरों द्वारा भी निर्दिष्ट किया जाता है। नाभिक से शुरू होकर।

मुख्य क्वांटम संख्या हमें निम्नलिखित जानकारी देती है:

(i) यह नाभिक से इलेक्ट्रॉन की औसत दूरी बताता है।

(ii) यह हाइड्रोजन परमाणु और हाइड्रोजन जैसे कणों में इलेक्ट्रॉन की ऊर्जा को पूरी तरह से निर्धारित करता है।

 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

(iii) किसी भी मुख्य कोश में उपस्थित इलेक्ट्रॉनों की अधिकतम संख्या 2n2 द्वारा दी जाती है, जहाँ n मुख्य कोश की संख्या है।

अज़ीमुथल या सहायक या कक्षीय कोणीय क्वांटम संख्या (l)

यह पाया गया है कि तत्वों के स्पेक्ट्रम में केवल मुख्य रेखाएँ होती हैं बल्कि कई महीन रेखाएँ भी मौजूद होती हैं। यह संख्या स्पेक्ट्रम की महीन रेखाओं को समझाने में मदद करती है।

अज़ीमुथल क्वांटम संख्या निम्नलिखित जानकारी देती है:

(i) मुख्य कोश में उपस्थित उपकोशों की संख्या।

(ii) किसी उपकोश में उपस्थित इलेक्ट्रॉन का कोणीय संवेग।

(इन) विभिन्न उपकोशों की सापेक्ष ऊर्जाएँ।

(iv) एक ही मुख्य कोश में मौजूद विभिन्न उपकोशों की आकृतियाँ।

इस क्वांटम संख्या को अक्षर  l द्वारा निरूपित किया जाता है। n के दिए गए मान के लिए, इसका 0 से n - 1 तक का कोई भी मान हो सकता है। उदाहरण के लिए,

पहले कोश (k) के लिए, n = 1, l का केवल एक मान हो सकता है, अर्थात् l = 0 n = 2 के लिए, l का संभावित मान 0 और 1 हो सकता है।

l के विभिन्न मानों के संगत उपकोश निम्नलिखित प्रतीकों द्वारा निरूपित किए जाते हैं:

एल का मान 0 1 2 3 4 5 ……………..

सबशेल s,p,d,f,g  ……………… .. के लिए नोटेशन

चुंबकीय कक्षीय क्वांटम संख्या (m)

चुंबकीय कक्षीय क्वांटम संख्या एक उपकोश में मौजूद इलेक्ट्रॉनों के पसंदीदा अभिविन्यासों की संख्या निर्धारित करती है। चूंकि प्रत्येक अभिविन्यास एक कक्षीय से मेल खाता है, इसलिए चुंबकीय कक्षीय क्वांटम संख्या किसी भी उपकोश में मौजूद कक्षकों की संख्या निर्धारित करती है।

चुंबकीय क्वांटम संख्या को अक्षर m या ml द्वारा निरूपित किया जाता है और l के दिए गए मान के लिए, इसमें शून्य सहित – l से + l तक के सभी मान हो सकते हैं।

अत: l के ऊर्जा मान के लिए m के 2l + 1 मान हैं।

उदाहरण के लिए,

l = 0 (s-सबशेल) के लिए, ml का केवल एक मान हो सकता है, अर्थात् m1 = 0

 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

इसका अर्थ यह है कि s-उपकोश में अंतरिक्ष में केवल एक अभिविन्यास होता है। दूसरे शब्दों में, s-उपकोश में केवल एक कक्षक होता है जिसे s-कक्षक कहा जाता है।

स्पिन क्वांटम संख्या (s)

यह क्वांटम संख्या पदार्थों के चुंबकीय गुणों की व्याख्या करने में मदद करती है। एक कताई इलेक्ट्रॉन एक निश्चित चुंबकीय क्षण के साथ एक माइक्रोमैग्नेट की तरह व्यवहार करता है। यदि किसी कक्षक में दो इलेक्ट्रॉन होते हैं, तो दो चुंबकीय क्षण एक दूसरे का विरोध करते हैं और रद्द करते हैं।

• s-कक्षकों की आकृतियाँ

s-कक्षक s-उपकोश में उपस्थित होता है। इस उपकोश के लिए, l = 0 और ml = 0 इस प्रकार, केवल एक अभिविन्यास के साथ s-कक्षक का गोलाकार आकार होता है, जिसमें तीनों अक्षों के साथ एकसमान इलेक्ट्रॉन घनत्व होता है।

इलेक्ट्रॉन के नाभिक के निकट अधिकतम होने की प्रायिकता पाई जाती है और नाभिक से दूरी बढ़ने के साथ घटती जाती है। 2s इलेक्ट्रॉन में, प्रायिकता भी नाभिक के पास अधिकतम होती है और शून्य प्रायिकता तक घट जाती है। 2s इलेक्ट्रॉन के लिए गोलाकार खाली कोश को नोडल सतह या केवल नोड कहा जाता है।

 


• p-कक्षकों की आकृतियाँ

p-कक्षक p-उपकोश में मौजूद होते हैं जिसके लिए l = 1 और m1 के तीन संभावित अभिविन्यास हो सकते हैं - 1, 0, + 1

इस प्रकार, p-उपकोश में तीन कक्षक होते हैं जिन्हें px, py और pz orbitals के रूप में निर्दिष्ट किया जाता है, जो उस अक्ष पर निर्भर करता है जिसके साथ उन्हें निर्देशित किया जाता है। पी-ऑर्बिटल का सामान्य आकार डंबल-बेल होता है जिसमें दो भाग होते हैं जिन्हें लोब कहा जाता है। इसके अलावा, नाभिक के माध्यम से गुजरने वाला एक विमान है जिसके साथ इलेक्ट्रॉन घनत्व की खोज लगभग शून्य है। इसे नोडल प्लेन के रूप में जाना जाता है जैसा कि अंजीर में दिखाया गया है।

 


डंब-बेल चित्रों से, यह बिल्कुल स्पष्ट है कि s-कक्षीय के विपरीत, p-कक्षक प्रकृति में दिशात्मक है और इसलिए यह अणुओं के आकार को प्रभावित करता है जिसके निर्माण में यह भाग लेता है।

• d-कक्षकों की आकृतियाँ

d-कक्षक d-उपकोश में मौजूद होते हैं जिसके लिए l = 2 और m[= -2, -1, 0, +1 और +2 इसका मतलब है कि पांच अलग-अलग ऑर्बिटल्स के लिए पांच ओरिएंटेशन हैं।

 

औफबौ सिद्धांत

सिद्धांत कहता है: परमाणुओं की जमीनी अवस्था में, उनकी बढ़ती ऊर्जाओं के क्रम में कक्षाएँ भरी जाती हैं।

दूसरे शब्दों में, इलेक्ट्रॉन पहले अपने लिए उपलब्ध न्यूनतम ऊर्जा कक्षक पर कब्जा कर लेते हैं और निम्न ऊर्जा कक्षकों के भर जाने के बाद ही उच्च ऊर्जा कक्षकों में प्रवेश करते हैं।

जिस क्रम में ऑर्बिटल्स की ऊर्जा बढ़ती है और इसलिए ऑर्बिटल्स को भरने का क्रम इस प्रकार है:

है, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, id, 5p, 6s, if, 3d, 6p, 7s, 5f 6d, 7p

अंजीर में दी गई विधि का उपयोग करके आदेश को याद किया जा सकता है। 2.11.

 


DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

पाउली अपवर्जन सिद्धांत

इस सिद्धांत के अनुसार, परमाणु में किसी भी दो इलेक्ट्रॉनों में चार क्वांटम संख्याओं का समान सेट नहीं हो सकता है।

पाउली अपवर्जन सिद्धांत को इस प्रकार भी कहा जा सकता है: एक ही कक्षक में केवल दो इलेक्ट्रॉन मौजूद हो सकते हैं और इन इलेक्ट्रॉनों के विपरीत स्पिन होने चाहिए।

अधिकतम गुणन का हंड का नियम

इसमें कहा गया है कि: एक ही उपकोश (p, d या f) से संबंधित कक्षकों में इलेक्ट्रॉनों का युग्मन तब तक नहीं होता जब तक कि उस उपकोश के प्रत्येक कक्षक में एक-एक इलेक्ट्रॉन हो, अर्थात यह एकल अधिभोग में हो।

परमाणुओं का इलेक्ट्रॉनिक विन्यास

किसी परमाणु के कक्षकों में इलेक्ट्रॉनों के वितरण को उसका इलेक्ट्रॉनिक विन्यास कहते हैं। विभिन्न परमाणुओं के इलेक्ट्रॉनिक विन्यास को दो तरह से दर्शाया जा सकता है।

उदाहरण के लिए:

 


पूरी तरह से भरे और आधे भरे उपकोशों की स्थिरता के कारण

पूरी तरह से भरे और आधे भरे उपकोश निम्नलिखित कारणों से स्थिर हैं:

 


DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

1. इलेक्ट्रॉनों का सममित वितरण: पूर्ण रूप से भरे या आधे भरे उपकोशों में इलेक्ट्रॉनों का सममित वितरण होता है और इसलिए वे अधिक स्थिर होते हैं।

2. स्थिरीकरण प्रभाव तब उत्पन्न होता है जब एक ही प्रचक्रण वाले दो या दो से अधिक इलेक्ट्रॉन किसी उपकोश के अपक्षयी कक्षकों में उपस्थित होते हैं। ये इलेक्ट्रॉन अपनी स्थिति का आदान-प्रदान करते हैं

और उनके आदान-प्रदान के कारण निकलने वाली ऊर्जा को विनिमय ऊर्जा कहा जाता है। एक्सचेंजों की संख्या अधिकतम तब होती है जब सबहेल या तो आधा भरा होता है या पूरी तरह से भरा होता है।

-परिणामस्वरूप विनिमय ऊर्जा अधिकतम होती है और स्थिरता भी।

 

 

Dr Omar Classes, Barra, Kanpur, Mobile - 9450149685

Structure of Atom Class 11 Notes Chemistry Chapter 2

• Discovery of Electron—Discharge Tube Experiment
In 1879, William Crooks studied the conduction of electricity through gases at low pressure. He performed the experiment in a discharge tube which is a cylindrical hard glass tube about 60 cm in length. It is sealed at both the ends and fitted with two metal electrodes as shown in Fig. 2.1.

The electrical discharge through the gases could be observed only at very low pressures and at very high voltages.
The pressure of different gases could be adjusted by evacuation. When sufficiently high voltage is applied across the electrodes, current starts flowing through a stream of particles moving in the tube from the negative electrode (cathode) to the positive electrode (anode). These were called cathode rays or cathode ray particles.
• Properties of Cathode Rays
(i) Cathode rays travel in straight line.
(ii) Cathode rays start from cathode and move towards the anode.
(iii) These rays themselves are not visible but their behaviour can be observed with the help of certain kind of materials (fluorescent or phosphorescent) which glow when hit by them.
(iv) Cathode rays consist of negatively charged particles. When electric field is applied on the cathode rays with the help of a pair of metal plates, these are found to be deflected towards the positive plate indicating the presence of negative charge.
(v) The characteristics of cathode rays do not depend upon the material of electrodes and the nature of gas present in the cathode ray’tube.
• Determination of Charge/Mass (elm) Ratio for Electrons
J. J. Thomson for the first time experimentally determined charge/mass ratio called elm ratio for the electrons. For this, he subjected the beam of electrons released in the discharge tube as cathode rays to influence the electric and magnetic fields. These were acting perpendicular to one another as well as to the path followed by electrons.
According to Thomson, the amount of deviation of the particles from their path in presence of electrical and magnetic field depends upon following factors:
(i) Greater the magnitude of the charge on the particle, greater is the interaction with the electric or magnetic field and thus greater is the deflection.
(ii) The mass of the particle — lighter the particle, greater the deflection.
(iii) The deflection of electrons from their original path increases with the increase in the

Dr Omar Classes, Barra, Kanpur, Mobile - 9450149685

voltage across the electrodes or strength of the magnetic field.
By carrying out accurate measurements on the amount of deflections observed by the electrons on the electric field strength or magnetic field strength, Thomson was able to determine the value of
e/me = 1.758820 x 1011 C kg-1 where me = Mass of the electron in kg
e = magnitude of charge on the electron in coulomb (C).
• Charge on the Electron
R.A. Millikan devised a method known as oil drop experiment to determine the charge on the electrons.

• Discovery of Proton—Anode Rays
In 1886, Goldstein modified the discharge tube by using a perforated cathode. On reducing the pressure, he observed a new type of luminous rays passing through the holes or perforations of the cathode and moving in a direction opposite to the cathode rays. These rays were named as positive rays or anode rays or as canal rays. Anode rays are not emitted from the anode but from a space between anode and cathode.
• Properties of Anode Rays
(i) The value of positive charge (e) on the particles constituting anode rays depends upon the nature of the gas in the discharge tube.
(ii) The charge to mass ratio of the particles is found to depend on the gas from which these originate.
(iii) Some of the positively charged particles carry a multiple of the fundamental unit of electrical charge.
(iv) The behaviour of these particles in the magnetic or electric field is opposite to that observed for electron or cathode rays.
• Proton
The smallest and lightest positive ion was obtained from hydrogen and was called proton. Mass of proton = 1.676 x 10-27 kg
Charge on a proton = (+) 1.602 x 10-19 C
• Neutron
It is a neutral particle. It was discovered by Chadwick (1932).
By the bombardment of thin sheets of beryllium with fast moving a-particles he observed • that highly penetrating rays consist of neutral particles which were named neutrons.
• Thomson Model of Atom

      Dr Omar Classes, Barra, Kanpur, Mobile - 9450149685
(i) J. J. Thomson proposed that an atom may be regarded as a sphere of approximate radius 1CT8 cm carrying positive charge due to protons and in which negatively charged electrons are embedded.
(ii) In this model, the atom is visualized as a pudding or cake of positive charge with electrons embedded into it.
(iii) The mass of atom is considered to be evenly spread over the atom according to this model.
Drawback of Thomson Model of Atom
This model was able to explain the overall neutrality of the atom, it could not satisfactorily, explain the results of scattering experiments carried out by Rutherford in 1911.
• Rutherford’s a-particle Scattering Experiment
Rutherford in 1911, performed some scattering experiments in which he bombarded thin foils of metals like gold, silver, platinum or copper with a beam of fast moving a-particles. The thin gold foil had a circular fluorescent zinc sulphide screen around it. Whenever a-particles struck the screen, a tiny flash of light was produced at that point.
From these experiments, he made the following observations:

(i) Most of the a-particles passed through the foil without undergoing any deflection,
(ii) A few a-particles underwent deflection through small angles.
(iii) Very few mere deflected back i.e., through an angle of nearly 180°.
From these observations, Rutherford drew the following conclusions:
(i) Since most of the a-particles passed through the foil without undergoing any deflection, there must be sufficient empty space within the atom.
(ii) A small fraction of a-particles was deflected by small angles. The positive charge has to be concentrated in a very small volume that repelled and deflected a few positively charged a-particles. This very small portion of the atom was called nucleus.
(iii) The volume of nucleus is very small as compared to total volume of atom.

• Rutherford’s Nuclear Model of an Atom
(i) The positive charge and most of the mass of the atom was densely concentrated in an extremely small region. This very small portion of the atom was called nucleus by Rutherford.

             DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
(ii) The nucleus is surrounded by electrons that move around the nucleus with a very high speed in circular paths called orbits.
(iii) Electrons and nucleus are held together by electrostatic forces of attraction.
• Atomic Number
The number of protons present in the nucleus is equal to the atomic number (z). For example, the number of protons in the hydrogen nucleus is 1, in sodium atom it is 11, therefore, their atomic numbers are 1 and 11. In order to keep the electrical neutrality, the number of electrons in an atom is equal to the number of protons (atomic number, z). For example, number of electrons in hydrogen atom and sodium atom are 1 and 11 respectively.
Atomic Number (z) = Number of protons in the nucleus of an atom.
= Number of electrons in a neutral atom.
• Mass Number
Number of protons and neutrons present in the nucleus are collectively known as nucleons. The total number of nucleons is termed as mass number (A) of the atom.
Mass Number (A) = Number of protons (p) + Number of neutrons (n).
• Isotopes
Atoms with identical atomic number but different atomic mass number are known as Isotopes.
Isotopes of Hydrogen:

These three isotopes are shown in the figure below:

               DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
Characteristics of Isotopes
(i) Since the isotopes of an element have the same atomic number, but different mass number, the nuclei of isotopes contain the same number of protons, but different number of neutrons.
(ii) Since, the isotopes differ in their atomic masses, all the properties of the isotopes depending upon the mass are different.
(iii) Since, the chemical properties are mainly determined by the number of protons in the nucleus, and the number of electrons in the atom, the different isotopes of an element exhibit similar chemical properties. For example, all the isotopes of carbon on burning give carbon dioxide.
• Isobars

• Drawbacks of Rutherford Model
(i) When a body is moving in an orbit, it achieves acceleration. Thus, an electron moving around nucleus in an orbit is under acceleration.
According to Maxwell’s electromagnetic theory, charged particles when accelerated must emit electromagnetic radiations. Therefore, an electron in an orbit will emit radiations, the energy carried by radiation comes from electronic motion. Its path will become closer to nucleus and ultimately should spiral into nucleus within . 10-8 s. But actually this does not happen.
Thus, Rutherford’s model cannot explain the stability of atom if the motion of electrons is described on the basis of classical mechanics and electromagnetic theory.
(ii) Rutherford’s model does not give any idea about distribution of electrons around the nucleus and about their energies.
• Developments Leading to the Bohr’s Model of Atom
Two developments played a major role in the formulation of Bohr’s model of atom. These were:
(i) Dual character of the electromagnetic radiation which means that radiations possess both wave like and particle like properties.
(ii) Experimental results regarding atomic spectra which can be explained only by assuming quantized electronic energy levels in atoms.
• Nature of Electromagnetic Radiation (Electromagnetic Wave Theory)
This theory was put forward by James Clark Maxwell in 1864. The main points of this theory are as follows:
(i) The energy is emitted from any source (like the heated rod or the filament of a bulb through which electric current is passed) continuously in the form of radiations and is called the radiant energy.

               DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
(ii) The radiations consist of electric and magnetic fields oscillating perpendicular to each other and both perpendicular to the direction of propagation of the radiation.
(iii) The radiations possess wave character and travel with the velocity of light 3 x 108m/sec.
(iv) These waves do not require any material medium for propagation. For example, rays from the sun reach us through space which is a non-material medium.
• Characteristics of a Wave
Wavelength: It is defined as the distance between any two consecutive crests or troughs. It is represented by X and its S.I. unit is metre.

Frequency: Frequency of a wave is defined as the number of waves passing through a point in one second. It is represented by v (nu) and is expressed in Hertz (Hz).
1 Hz = 1 cycle/sec.
Velocity: Velocity of a wave is defined as the linear distance travelled by the wave in one second.
It is represented by c and is expressed in cm/sec or m/sec.
Amplitude: Amplitude of a wave is the height of the crest or the depth of the through. It is represented by V and is expressed in the units of length.
Wave Number: It is defined as the number of waves present in 1 metre length. Evidently it will be equal to the reciprocal of the wavelength. It is represented by bar v (read as nu bar).

Electromagnetic Spectrum: When electromagnetic radiations are arranged in order of their increasing wavelengths or decreasing frequencies, the complete spectrum obtained is called electromagnetic spectrum.

              DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
• Limitations of Electromagnetic Wave Theory
Electromagnetic wave theory was successful in explaining properties of light such as interference, diffraction etc; but it could not explain the following:
(i) The phenomenon of black body radiation.
(ii) The photoelectric effect.
(iii) The variation of heat capacity of solids as a function of temperature.
(iv) The line spectra of atoms with reference to hydrogen.
• Black Body Radiation
The ideal body, which emits and absorbs all frequencies is called a black body and the radiation emitted by such a body is called black body radiation. The. exact frequency distribution of the emitted radiation from a black body depends only on its temperature.

At a given temperature, intensity of radiation emitted increases with decrease of wavelength, reaches a maximum value at a given wavelength and then starts decreasing with further decrease of wavelength as shown in Fig 2.6.
• Planck’s Quantum Theory
To explain the phenomenon of ‘Black body radiation’ and photoelectric effect, Max Planck in 1900, put forward a theory known as Planck’s Quantum Theory.
This theory was further extended by Einstein in 1905. The main points of this theory was as follows: ,
(i) The radiant energy emitted or absorbed in the form of small packets of energy. Each such packets of energy is called a quantum.
(ii) The energy of each quantum is directly proportional to the frequency of the radiation

where h is a proportionality constant, called Planck’s constant. Its value is equal to 6.626 x 10-34 Jsec.

              DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
• Photoelectric Effect
Hertz, in 1887, discovered that when a beam of light of certain frequency strikes the surface of some metals, electrons are emitted or ejected from the metal surface. The phenomenon is called photoelectric effect.

Observations in Photoelectric Effect
(i) Only photons of light of certain minimum frequency called threshold frequency (v0) can cause the photoelectric effect. The value of v0 is different for different metals.
(ii) The kinetic energy of the electrons which are emitted is directly proportional to the frequency of the striking photons and is quite independent of their intensity.
(iii) The number of electrons that are ejected per second from the metal surface depends upon the intensity of the striking photons or radiations and not upon their frequency.
Explanation of Photoelectric Effect
Einstein in (1905) was able to give an explanation of the different points of the photoelectric effect using Planck’s quantum theory as under:
(i) Photoelectrons are ejected only when the incident light has a certain minimum frequency (threshold frequency v0)
(ii) If the frequency of the incident light (v) is more than the threshold frequency (v0), the excess energy (hv – hv0) is imparted to the electron as kinetic energy.
K.E. of the ejected electron

energy of the emitted electron.

           DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
(iii) On increasing the intensity of light, more electrons are ejected but the energies of the electrons are not altered.
• Dual Behaviour of Electromagnetic Radiation
From the study of behaviour of light, scientists came to the conclusion that light and other electromagnetic radiations have dual nature. These are wave nature as well as particle nature. Whenever radiation interacts with matter, it displays particle like properties in contrast to the wavelike properties (interference and diffraction) which it exhibits when it propagates. Some microscopic particles, like electrons, also exhibit this wave-particle duality.
• Spectrum
When a ray of white light is passed through a prism the wave with shorter wavelength bends more than the one with a longer wavelength. Since ordinary white light consists of waves with all the wavelengths in the visible range, array of white light is spread out into a series of coloured bands called spectrum. The light of red colour which has longest wavelength is deviated the least while the violet light, which has shortest wavelength is deviated the most.
Continuous Spectrum
When a ray of white light is analysed by passing through a prism it is observed that it splits up into seven different wide bands of colours from violet to red (like rainbow). These colours are so continuous that each of them merges into the
next. Hence, the spectrum is called continuous spectrum.
Emission Spectra
Emission Spectra is noticed when the radiations emitted from a source are passed through a prism and then received on the photographic plate. Radiations can be emitted in a number of ways such as:
(i) from sun or glowing electric bulb.
(ii) by passing electric discharge through a gas at low pressure.
(iii) by heating a substance to high temperature.
Line Spectra
When the vapours of some volatile substance are allowed to fall on the flame of a Bunsen burner and then analysed with the help of a spectroscope. Some specific coloured lines appear on the photographic plate which are different for different substances. For example, sodium or its salts emit yellow light while potassium or its salts give out violet light.
Absorption Spectra
When white light is passed through the vapours of a substance and the transmitted light is then allowed to strike a prism, dark lines appear in the otherwise continuous spectrum. The dark lines indicate that the radiations corresponding to them were
absorbed by the substance from the white light. This spectrum is called absorption spectrum.
Dark lines appear exactly at the same positions where the lines in the emission spectra appear.

              DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
• Line Spectrum of Hydrogen
When electric discharge is passed through hydrogen gas enclosed in discharge tube under low pressure and the emitted light is analysed by a spectroscope, the spectrum consists of a large number of lines which are grouped into different series. The complete spectrum is known as hydrogen spectrum.
On the basis of experimental observations, Johannes Rydberg noted that all series of lines in the hydrogen spectrum could be described by the following expression:

Rydberg in 1890, and has giv
en a simple theoretical equation for the calculation of wavelengths and wave numbers of the spectral lines in different series of hydrogen spectrum. The equation is known as Rydberg formula (or equation).

This relation is valid for hydrogen atom only. For other species,

where Z is the atomic number of the species.
Here RH = constant, called Rydberg constant for hydrogen and n1 , n2 are integers (n2 > n1)
For any particular series, the value of n1 is constant while that of n2 changes. For example,
For Lyman series, n1= 1, n2= 2, 3, 4, 5………..
For Balmer series, n1 = 2, n2 = 3, 4, 5, 6………..
For Paschen series, n1= 3, n2 = 4, 5, 6, 7………..
For Brackett series,n1 = 4, n2 = 5, 6, 7, 8………..
For Pjund series, n1 =5, n2 = 6, 7, 8, 9………..

              DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
Thus, by substituting the values of n1 and n2 in the above equation, wavelengths and wave number of different spectral lines can be calculated. When n1 = 2, the expression given above is called Balmer’s formula.
• Bohr’s Model of Atom
Niels Bohr in 1913, proposed a new model of atom on the basis of Planck’s Quantum Theory. The main points of this model are as follows:
(i) In an atom, the electrons revolve around the nucleus in certain definite circular paths called orbits.
(ii) Each orbit is associated with definite energy and therefore these are known as energy
levels or energy shells. These are numbered as 1, 2, 3, 4……….. or K, L, M, N………..
(iii) Only those energy orbits are permitted for the electron in which angular momentum of the electron is a whole number multiple of h/2π
Angular momentum of electron (mvr) = nh/2π (n = 1, 2, 3, 4 etc).
m = mass of the electron.
v = tangential velocity of the revolving electron.
r = radius of the orbit.
h = Planck’s constant.
n is an integer.
(iv) As long as electron is present in a particular orbit, it neither absorbs nor loses energy and its energy, therefore, remains constant.
(v) When energy is supplied to an electron, it absorbs energy only in fixed amounts as quanta and jumps to higher energy state away from the nucleus known as excited state. The excited state is unstable, the electron may jump back to the lower energy state and in doing so, it emits the same amount of energy. (∆E = E2 – E1).
• Achievements of Bohr’s Theory
1. Bohr’s theory has explained the stability of an atom.
2. Bohr’s theory has helped in calculating the energy of electron in hydrogen atom and one electron species. The mathematical expression for the energy in the nth orbit is,

• Limitations of Bohr’s Model
(i) The theory could not explain the atomic spectra of the atoms containing more than one electron or multielectron atoms.
(ii) Bohr7s theory failed to explain the fine structure of the spectral lines.

               DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
(iii) Bohr’s theory could not offer any satisfactory explanation of Zeeman effect and Stark effect.
(iv) Bohr’s theory failed to explain the ability of atoms to form molecule formed by chemical bonds.
(v) It was not in accordance with the Heisenberg’s uncertainty principle.
• Dual Behaviour of Matter (de Broglie Equation)
de Broglie in 1924, proposed that matter, like radiation, should also exhibit dual behaviour i.e., both particle like and wave like properties. This means that like photons, electrons also have momentum as well as wavelength.
From this analogy, de Broglie gave the following relation between wavelength (λ) and momentum (p) of a material particle.

• Heisenberg’s Uncertainty Principle
It states that, “It is impossible to determine simultaneously, the exact position and exact momentum (or velocity) of an electron”.

• Significance of Uncertainty Principle
(i) It rules out existence of definite paths or trajectories of electrons and other similar particles.
(ii) The effect of Heisenberg’s uncertainty principle is significant only for microscopic objects and is negligible for macroscopic objects.
• Reasons for the Failure of Bohr Model
(i) The wave character of the electron is not considered in Bohr Model.
(ii) According to Bohr Model an orbit is a clearly defined path and this path can completely be defined only if both the position and the velocity of the electron are known exactly at the same time. This is not possible according to the Heisenberg’s uncertainty principle.

                     DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
• Quantum Mechanical Model of Atom
Quantum mechanics: Quantum mechanics is a theoretical science that deals with the study of the motions of the microscopic objects that have both observable wave like and particle like properties.
Important Features of Quantum Mechanical Model of Atom
(i) The energy of electrons in atom is quantized i.e., can only have certain values.
(ii) The existence of quantized electronic energy level is a direct result of the wave like properties of electrons.
(iii) Both the exact position and exact velocity of an electron in an atom cannot be determined simultaneously.
(iv) An atomic orbital has wave function φ. There are many orbitals in an atom. Electron occupy an atomic orbital which has definite energy. An orbital cannot have more than two electrons. The orbitals are filled in increasing order of energy. All the information about the electron in an atom is stored in orbital wave function φ.
(v) The probability of finding electron at a point within an atom is proportional to square of orbital wave function i.e., |φ2|at that point. It is known as probability density and is always positive.
From the value of φ2 at different points within atom, it is possible to predict the region around the nucleus where electron most probably will be found.
• Quantum Numbers
Atomic orbitals can be specified by giving their corresponding energies and angular momentums which are quantized (i.e., they have specific values). The quantized values can be expressed in terms of quantum
number. These are used to get complete information about electron i.e., its location, energy, spin etc.
Principal Quantum Number (n)
It is the most important quantum number since it tells the principal energy level or shell to which the electron belongs. It is denoted by the letter V and can have any integral value except zero, i.e., n = 1, 2, 3, 4……….. etc.
The various principal energy shells are also designated by the letters, K, L, M, N, O, P ….. etc. Starting from the nucleus.
The principal quantum number gives us the following information:
(i) It gives the average distance of the electron from the nucleus.
(ii) It completely determines the energy of the electron in hydrogen atom and hydrogen like particles.
(iii) The maximum number of electrons present in any principal shell is given by 2n2 where n is the number of the principal shell.
Azimuthal or Subsidiary or Orbital Angular Quantum Number (l)
It is found that the spectra of the elements contain not only the main lines but there are many fine lines also present. This number helps to explain the fine lines of the  spectrum.

             DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
The azimuthal quantum number gives the following information:
(i) The number of subshells present in the main shell.
(ii) The angular momentum of the electron present in any subshell.
(in) The relative energies of various subshells.
(iv) The shapes of the various subshells present within the same principal shell.
This quantum number is denoted by the letter T. For a given value of n, it can have any value ranging from 0 to n – 1. For example,
For the 1st shell (k), n = 1, l can have only one value i.e., l = 0 For n = 2, the possible value of l can be 0 and 1.
Subshells corresponding to different values of l are represented by the following symbols:
value of l 0 1 2 3 4 5 ……………..
Notation for subshell s p d f g h ………………..
Magnetic Orbital Quantum Number (m or m1)
The magnetic orbital quantum number determines the number of preferred orientations of the electrons present in a subshell. Since each orientation corresponds to an orbital, therefore, the magnetic orbital quantum number determines the number of orbitals present in any subshell.
The magnetic quantum number is denoted by letter m or ml and for a given value of l, it can have all the values ranging from – l to + l including zero.
Thus, for energy value of l, m has 2l + 1 values.
For example,
For l = 0 (s-subshell), ml can have only one value i.e., m1 = 0.
This means that s-subshell has only one orientation in space. In other words, s-subshell has only one orbital called s-orbital.
Spin Quantum Number (S or ms)
This quantum number helps to explain the magnetic properties of the substances. A spinning electron behaves like a micromagnet with a definite magnetic moment. If an orbital contains two electrons, the two magnetic moments oppose and cancel each other.
• Shapes of s-orbitals
s-orbital is present in the s-subshell. For this subshell, l = 0 and ml = 0. Thus, s-orbital with only one orientation has a spherical shape with uniform electron density along all the three axes.
The probability of Is electron is found to be maximum near the nucleus and decreases with the increase in the distance from the nucleus. In 2s electron, the probability is also maximum near the nucleus and decreases to zero probability. The spherical empty shell for 2s electron is called nodal surface or simply node.

               DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685

• Shapes of p-orbitals
p-orbitals are present in the p-subshell for which l = 1 and m1 can have three possible orientations – 1, 0, + 1.
Thus, there are three orbitals in the p-subshell which are designated as px, py and pzorbitals depending upon the axis along which they are directed. The general shape of a p-orbital is dumb-bell consisting of two portions known as lobes. Moreover, there is a plane passing through the nucleus along which finding of the electron density is almost nil. This is known as nodal plane as shown in the fig.

From the dumb-bell pictures, it is quite obvious that unlike s-orbital, a p-orbital is directional in nature and hence it influences the shapes of the molecules in the formation of which it participates.
• Shapes of d-orbitals
d-orbitals are present in d-subshell for which l = 2 and m[ = -2, -1, 0, +1 and +2. This means that there are five orientations leading to five different orbitals.

• Aufbau Principle
The principle states: In the ground state of the atoms, the orbitals are filled in order of their increasing energies.

                    DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685
In other words, electrons first occupy the lowest energy orbital available to them and enter into higher energy orbitals only after the lower energy orbitals are filled.
The order in which the energies of the orbitals increase and hence the order in which the orbitals are filled is as follows:
Is, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, id, 5p, 6s, if, 3d, 6p, 7s, 5f 6d, 7p
The order may be remembered by using the method given in fig. 2.11.

•Pauli Exclusion Principle
According to this principle, no two electrons in an atom can have the same set of four quantum numbers.
Pauli exclusion principle can also be stated as: Only two electrons may exist in the same orbital and these electrons must have opposite spins.
• Hund’s Rule of Maximum Multiplicity
It states that: pairing of electrons in the orbitals belonging to the same subshell (p, d or f) does not take place until each orbital belonging to that subshell has got one electron each i.e., it is singly occupied.
• Electronic Configuration of Atoms
The distribution of electrons into orbitals of an atom is called its electronic configuration. The electronic configuration of different atoms can be represented in two ways.
For example:

• Causes of Stability of Completely Filled and Half Filled Subshells
The completely filled and half filled subshells are stable due to the following reasons:

1. Symmetrical distribution of electrons: The completely filled or half filled subshells have symmetrical distribution of electrons in them and are therefore more stable.
2. The stabilizing effect arises whenever two or more electrons with same spin are present in the degenrate orbitals of a subshell. These electrons tend to exchange their positions
and the energy released due to their exchange is called exchange energy. The number of exchanges that can takes place is maximum when the subshell is either half filled or completely filled.
-As a result the exchange energy is maximum and so is the stability.

 

              DR OMAR CLASSES, BARRA, KANPUR, MOBILE-9450149685



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DR OMAR CLASSES BARRA KANPUR MOB- 9450149685

 

No comments:

Post a Comment